375 research outputs found

    The connexin 43 regulator rotigaptide reduces cytokine-induced cell death in human islets

    Get PDF
    Background: Intercellular communication mediated by cationic fluxes through the Connexin family of gap junctions regulates glucose-stimulated insulin secretion and beta cell defense against inflammatory stress. Rotigaptide (RG, ZP123) is a peptide analog that increases intercellular conductance in cardiac muscle cells by the prevention of dephosphorylation and thereby uncoupling of Connexin-43 (Cx43), possibly via action on unidentified protein phosphatases. For this reason, it is being studied in human arrhythmias. It is unknown if RG protects islet cell function and viability against inflammatory or metabolic stress, a question of considerable translational interest for the treatment of diabetes. Methods: Apoptosis was measured in human islets shown to express Cx43, treated with RG or the control peptide ZP119 and exposed to glucolipotoxicity or IL-1β + IFNɣ. INS-1 cells shown to lack Cx43 were used to examine if RG protected human islet cells via Cx43 coupling. To study the mechanisms of action of Cx43-independent effects of RG, NO, IkBα degradation, mitochondrial activity, ROS, and insulin mRNA levels were determined. Results: RG reduced cytokine-induced apoptosis ~40% in human islets. In Cx43-deficient INS-1 cells, this protective effect was markedly blunted as expected, but unexpectedly, RG still modestly reduced apoptosis, and improved mitochondrial function, insulin-2 gene levels, and accumulated insulin release. RG reduced NO production in Cx43-deficient INS-1 cells associated with reduced iNOS expression, suggesting that RG blunts cytokine-induced NF-κB signaling in insulin-producing cells in a Cx43-independent manner. Conclusion: RG reduces cytokine-induced cell death in human islets. The protective action in Cx43-deficient INS-1 cells suggests a novel inhibitory mechanism of action of RG on NF-κB signaling

    Sustained Effects of Interleukin-1 Receptor Antagonist Treatment in Type 2 Diabetes

    Get PDF
    Objective: Interleukin (IL)-1 impairs insulin secretion and induces beta-cell apoptosis. Pancreatic beta-cell IL-1 expression is increased and interleukin-1-receptor antagonist (IL-1Ra) expression reduced in patients with type 2 diabetes mellitus. Treatment with recombinant IL-1Ra improves glycemia and beta-cell function and reduces inflammatory markers in patients with type 2 diabetes mellitus. Here we investigated the durability of these responses. Research Design and Methods: Among 70 ambulatory patients with type 2 diabetes and A1C and body mass index higher than 7.5% and 27, respectively, randomly assigned to receive 13 weeks of anakinra, a recombinant human IL-1Ra, or placebo, 67 completed treatment and were included in this double-blinded 39 week follow-up study. Primary outcome was change in betacell function following anakinra withdrawal. Analysis was done by intention-to-treat. Results: Thirty-nine weeks following anakinra withdrawal the proinsulin to insulin (PI/I) ratio but not stimulated C-peptide remained improved by -0.07 (95% CI -0.14 to -0.02, P=0.011) compared to placebo treated patients. Interestingly, a subgroup characterized by genetically determined low baseline IL-1Ra serum levels, maintained the improved stimulated C-peptide obtained by 13 weeks of IL-1Ra treatment. Reductions of C-reactive protein (-3.2 mg/l [95% CI -6.2 to -1.1, P=0.014]) and of IL-6 (-1.4 ng/l [95% CI -2.6 to -0.3, P=0.036]) were maintained until end of study. Conclusions: IL-1 blockade with anakinra induces improvement of the PI/I ratio and in markers of systemic inflammation lasting 39 weeks following treatment withdrawal

    Proliferation of sorted human and rat beta cells

    Get PDF
    Aims/hypothesis: The aim of the study was to determine whether purified beta cells can replicate in vitro and whether this is enhanced by extracellular matrix (ECM) and growth factors. Methods: Human beta cells were purified by FACS by virtue of their high zinc content using Newport Green, and excluding ductal and dead cells. Rat beta cells were sorted by autofluorescence or using the same method developed for human cells. Cells were plated on poly-l-lysine or ECMs from rat or human bladder carcinoma cells or bovine corneal ECM and incubated in the presence of BrdU with or without growth factors. Results: The newly developed method for sorting human beta cells yields a population containing 91.4 ± 2.8% insulin-positive cells with a low level of spontaneous apoptosis and a robust secretory response to glucose. Beta cells from 8-week-old rats proliferated in culture and this was increased by ECM. Among growth factors, only human growth hormone (hGH) and the glucagon-like peptide-1 analogue liraglutide enhanced proliferation of rat beta cells, with a significant increase on both poly-l-lysine and ECM. By contrast, sorted adult human beta cells from 16 donors aged 48.9 ± 14.3years (range 16-64years) failed to replicate demonstrably in vitro regardless of the substratum or growth factors used. Conclusions/interpretation: These findings indicate that, in our conditions, the fully differentiated human adult insulin-producing beta cell was unable to proliferate in vitro. This has important implications for any attempt to expand cells from pancreases of donors of this age group. By contrast, the rat beta cells used here were able to divide in vitro, and this was enhanced by ECM, hGH and liraglutid

    Interleukin-1 Stimulates β-Cell Necrosis and Release of the Immunological Adjuvant HMGB1

    Get PDF
    BACKGROUND: There are at least two phases of β-cell death during the development of autoimmune diabetes: an initiation event that results in the release of β-cell-specific antigens, and a second, antigen-driven event in which β-cell death is mediated by the actions of T lymphocytes. In this report, the mechanisms by which the macrophage-derived cytokine interleukin (IL)-1 induces β-cell death are examined. IL-1, known to inhibit glucose-induced insulin secretion by stimulating inducible nitric oxide synthase expression and increased production of nitric oxide by β-cells, also induces β-cell death. METHODS AND FINDINGS: To ascertain the mechanisms of cell death, the effects of IL-1 and known activators of apoptosis on β-cell viability were examined. While IL-1 stimulates β-cell DNA damage, this cytokine fails to activate caspase-3 or to induce phosphatidylserine (PS) externalization; however, apoptosis inducers activate caspase-3 and the externalization of PS on β-cells. In contrast, IL-1 stimulates the release of the immunological adjuvant high mobility group box 1 protein (HMGB1; a biochemical maker of necrosis) in a nitric oxide-dependent manner, while apoptosis inducers fail to stimulate HMGB1 release. The release of HMGB1 by β-cells treated with IL-1 is not sensitive to caspase-3 inhibition, while inhibition of this caspase attenuates β-cell death in response to known inducers of apoptosis. CONCLUSIONS: These findings indicate that IL-1 induces β-cell necrosis and support the hypothesis that macrophage-derived cytokines may participate in the initial stages of diabetes development by inducing β-cell death by a mechanism that promotes antigen release (necrosis) and islet inflammation (HMGB1 release)

    Mixed-Meal Tolerance Test Versus Glucagon Stimulation Test for the Assessment of β-Cell Function in Therapeutic Trials in Type 1 Diabetes

    Get PDF
    OBJECTIVE—β-Cell function in type 1 diabetes clinical trials is commonly measured by C-peptide response to a secretagogue in either a mixed-meal tolerance test (MMTT) or a glucagon stimulation test (GST). The Type 1 Diabetes TrialNet Research Group and the European C-peptide Trial (ECPT) Study Group conducted parallel randomized studies to compare the sensitivity, reproducibility, and tolerability of these procedures

    JNK3 Maintains Expression of the Insulin Receptor Substrate 2 (IRS2) in Insulin-Secreting Cells: Functional Consequences for Insulin Signaling

    Get PDF
    We have recently shown that silencing of the brain/islet specific c-Jun N-terminal Kinase3 (JNK3) isoform enhances both basal and cytokine-induced beta-cell apoptosis, whereas silencing of JNK1 or JNK2 has opposite effects. While it is known that JNK1 or JNK2 may promote apoptosis by inhibiting the activity of the pro-survival Akt pathway, the effect of JNK3 on Akt has not been documented. This study aims to determine the involvement of individual JNKs and specifically JNK3 in the regulation of the Akt signaling pathway in insulin-secreting cells. JNK3 silencing strongly decreases Insulin Receptor Substrate 2 (IRS2) protein expression, and blocks Akt2 but not Akt1 activation by insulin, while the silencing of JNK1 or JNK2 activates both Akt1 and Akt2. Concomitantly, the silencing of JNK1 or JNK2, but not of JNK3, potently phosphorylates the glycogen synthase kinase3 (GSK3β). JNK3 silencing also decreases the activity of the transcription factor Forkhead BoxO3A (FoxO3A) that is known to control IRS2 expression, in addition to increasing c-Jun levels that are known to inhibit insulin gene expression. In conclusion, we propose that JNK1/2 on one hand and JNK3 on the other hand, have opposite effects on insulin-signaling in insulin-secreting cells; JNK3 protects beta-cells from apoptosis and dysfunction mainly through maintenance of a normal IRS2 to Akt2 signaling pathway. It seems that JNK3 mediates its effects mainly at the transcriptional level, while JNK1 or JNK2 appear to mediate their pro-apoptotic effect in the cytoplasm

    Antibodies to a 64,000 Mr human islet cell antigen precede the clinical onset of insulin-dependent diabetes

    Get PDF
    Antibodies in sera from newly diagnosed insulin-dependent diabetes mellitus (IDDM) patients are directed to a human islet cell protein of relative molecular mass (Mr) 64,000. Since IDDM seems to develop after a prodromal period of beta-cell autoimmunity, this study has examined whether 64,000 Mr antibodies could be detected in 14 individuals who subsequently developed IDDM and five first degree relatives who have indications of altered beta-cell function. Sera were screened by immunoprecipitation on total detergent lysates of human islets and positive sera retested on membrane protein preparations. Antibodies to the 64,000 Mr membrane protein were consistently detected in 11/14 IDDM patients, and in all 5 first degree relatives. 10 IDDM patients were already positive in the first samples, obtained 4-91 mo before the clinical onset of IDDM, whereas 1 patient progressed to a high 64,000 Mr immunoreactivity, at a time where a commencement of a decline in beta-cell function was detected. 64,000 Mr antibodies were detected before islet cell cytoplasmic antibodies (ICCA) in two patients. In the control groups of 21 healthy individuals, 36 patients with diseases of the thyroid and 5 SLE patients, the 64,000 Mr antibodies were detected in only one individual, who was a healthy sibling to an IDDM patient. These results suggest that antibodies against the Mr 64,000 human islet protein are an early marker of beta-cell autoimmunity and may be useful to predict a later development of IDDM

    Excessive Food Intake, Obesity and Inflammation Process in Zucker fa/fa Rat Pancreatic Islets

    Get PDF
    Inappropriate food intake-related obesity and more importantly, visceral adiposity, are major risk factors for the onset of type 2 diabetes. Evidence is emerging that nutriment-induced β-cell dysfunction could be related to indirect induction of a state of low grade inflammation. Our aim was to study whether hyperphagia associated obesity could promote an inflammatory response in pancreatic islets leading to ß-cell dysfunction. In the hyperphagic obese insulin resistant male Zucker rat, we measured the level of circulating pro-inflammatory cytokines and estimated their production as well as the expression of their receptors in pancreatic tissue and β-cells. Our main findings concern intra-islet pro-inflammatory cytokines from fa/fa rats: IL-1β, IL-6 and TNFα expressions were increased; IL-1R1 was also over-expressed with a cellular redistribution also observed for IL-6R. To get insight into the mechanisms involved in phenotypic alterations, abArrays were used to determine the expression profile of proteins implicated in different membrane receptors signaling, apoptosis and cell cycle pathways. Despite JNK overexpression, cell viability was unaffected probably because of decreases in cleaved caspase3 as well as in SMAC/DIABLO and APP, involved in the induction and amplification of apoptosis. Concerning β-cell proliferation, decreases in important cell cycle regulators (Cyclin D1, p35) and increased expression of SMAD4 probably contribute to counteract and restrain hyperplasia in fa/fa rat islets. Finally and probably as a result of IL-1β and IL-1R1 increased expressions with sub-cellular redistribution of the receptor, islets from fa/fa rats were found more sensitive to both stimulating and inhibitory concentrations of the cytokine; this confers some physiopathological relevance to a possible autocrine regulation of β-cell function by IL-1β. These results support the hypothesis that pancreatic islets from prediabetic fa/fa rats undergo an inflammatory process. That the latter could contribute to β-cell hyperactivity/proliferation and possibly lead to progressive β-cell failure in these animals, deserves further investigations

    Bimodal Effect on Pancreatic β-Cells of Secretory Products From Normal or Insulin-Resistant Human Skeletal Muscle

    Get PDF
    OBJECTIVE: Type 2 diabetes is characterized by insulin resistance with a relative deficiency in insulin secretion. This study explored the potential communication between insulin-resistant human skeletal muscle and primary (human and rat) beta-cells. RESEARCH DESIGN AND METHODS: Human skeletal muscle cells were cultured for up to 24 h with tumor necrosis factor (TNF)-alpha to induce insulin resistance, and mRNA expression for cytokines was analyzed and compared with controls (without TNF-alpha). Conditioned media were collected and candidate cytokines were measured by antibody array. Human and rat primary beta-cells were used to explore the impact of exposure to conditioned media for 24 h on apoptosis, proliferation, short-term insulin secretion, and key signaling protein phosphorylation and expression. RESULTS: Human myotubes express and release a different panel of myokines depending on their insulin sensitivity, with each panel exerting differential effects on beta-cells. Conditioned medium from control myotubes increased proliferation and glucose-stimulated insulin secretion (GSIS) from primary beta-cells, whereas conditioned medium from TNF-alpha-treated insulin-resistant myotubes (TMs) exerted detrimental effects that were either independent (increased apoptosis and decreased proliferation) or dependent on the presence of TNF-alpha in TM (blunted GSIS). Knockdown of beta-cell mitogen-activated protein 4 kinase 4 prevented these effects. Glucagon-like peptide 1 protected beta-cells against decreased proliferation and apoptosis evoked by TMs, while interleukin-1 receptor antagonist only prevented the latter. CONCLUSIONS: Taken together, these data suggest a possible new route of communication between skeletal muscle and beta-cells that is modulated by insulin resistance and could contribute to normal beta-cell functional mass in healthy subjects, as well as the decrease seen in type 2 diabetes
    corecore